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Abstract—A new SPHERE-3 telescope is being developed for the study of the cosmic ray spectrum and
mass composition in the 5–1000 PeV energy range. Registration of extensive air showers using reflected
Cherenkov light method applied in the SPHERE detector series requires a good trigger system for accurate
separation of events from the background produced by starlight and airglow photons reflected from the
snow. Here, we present the results of convolutional networks application for the classification of images
obtained from Monte Carlo simulation of the detector. The simulated detector response includes photon
tracing through the optical system, silicon photomultiplier operation, and the electronics response and
digitization process. The results are compared to the SPHERE-2 trigger system performance.
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1. INTRODUCTION

Cherenkov light (CL) is the optical component
of extensive air showers (EASs) that allows for ob-
taining some information about the primary particle
of the shower and therefore about cosmic rays. For
EAS detectors, in order to increase the number of
registered EAS events, there is a need to register CL
from as large an area as possible. In the case of
ground experiments [1–3] this involves an increase
in the number of detectors. An alternative is the
method of EAS registration which is used in the
SPHERE experiment series. The telescope is risen to
a certain altitude above the snow surface and detects
CL reflected from the snow (Fig. 1). This allows
for the use only one compact detector as well as to
change the resolution in the energy spectrum sections
by changing the telescope altitude. Previous experi-
ments (SPHERE-1 and SPHERE-2) are described
in detail in [4].

*E-mail: el.entina@physics.msu.ru
**E-mail: d.a.podgrudkov@physics.msu.ru

Comparing to the SPHERE-2 detector, the new
one will have a larger aperture and higher spatial
resolution (2653 pixels in the light sensitive camera
instead of 109), and some other features (like direct
EAS CL registration, see [5]). Since the new detector
will be carried by an unmanned aerial vehicle, its
weight needs to be lower than that of SPHERE-
2. The best way to reduce the detector weight is
to switch from photomultiplier tubes (PMT) to sili-
con photomultipliers (SiPM). SiPMs find more and
more use in astrophysics applications, specifically
in imaging air Cherenkov telescope cameras [6–8],
since they are smaller, lighter, and operate at lower
voltages than PMTs. Lower operation voltages inher-
ently allow for weight savings in power supply units,
which in turn reduces power consumption and further
decreases the weight of the batteries.

However, SiPMs have some specific properties
that affect measurements: high temperature depen-
dence of both amplification and sensitivity, and optical
cross-talk. The former can be resolved by camera
and power supply electronics temperature control and
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Fig. 1. SPHERE-3 experiment scheme.

stabilization, which is achievable since power con-
sumption and the resulting heat generation are low.
The latter, however, should be taken into account in
detector design and data analysis. A SiPM is a set of
a large number of avalanche photodiodes (individually
referred to as microcells) working in Geiger mode that
are combined on a single crystal. When a microcell is
hit by a photon, it discharges, and this discharge itself
can produce optical photons (as any current in a p–n
junction does) which can then trigger other microcells
in the SiPM. This process is called optical cross-talk
(or simply cross-talk in short).

Since the cross-talk is, essentially, a random pro-
cess and the number of microcells in an individual
SiPM is large (from a few hundred to tens of thou-
sands), the actual number of microcells triggered by
a single photon and, thus, the resulting response
amplitude, is also random. However, while the proba-
bility of a cross-talk may be quite high (up to 0.35 and
above depending on the SiPM overvoltage), its effect
is always an additional signal above the expected and
can be accounted for during the calibration and data
analysis procedure.

However, for the trigger system, which is needed
to separate the signal from the noise (since the tele-
scope is registering light continuously), the situation
is different. In the previous version of the telescope,
this was done by a topological trigger. Due to the
SiPM cross-talk, this approach will not work as in-
tended in the new design.

The rest of the paper is organized as follows: Sec-
tion 2 describes the trigger system of the previous

Fig. 2. An example of a topological trigger activation. On
the right are shown all possible triplet variations (without
rotations).

version of the telescope, and explains the reasons why
its direct implementation in the developed telescope
is insufficient, and proposes a two-stage model of
the trigger algorithm. The following sections of the
paper focus on the development of the second trigger
stage, namely the additional filtering stage: Section 3
provides information on the solution method, the re-
quired data preparation, and the implementation de-
tails, Section 4 describes the results, which are then
discussed in detail in Section 5.

2. TRIGGER SYSTEM

The SPHERE-2 detector, when triggered, began
recording the incoming photon flow. The trigger was
topological: first, adaptive thresholds were calculated
depending on the noise level (which made the trigger
independent of background illumination), after which
the topological logic was triggered: if 3 adjacent
pixels (Fig. 2) on the mosaic exceeded the threshold
within certain time window, recording began.

It is impossible to apply this approach to the new
type of pixels. SiPMs are much more susceptible to
multiple triggering than PMTs. With an increase in
the number of pixels, the number of false triggerings
increases due to the larger number of adjacent pixel
triplets (which is nearly directly proportional to the
number of pixels).

Another issue is that there is a constant flux
of background photons and dark current electrons.
PMTs by their design cannot produce more than one
photoelectron per photon, but have a wide amplifica-
tion distribution (see, for example, manufacturer or
our data [9, 10]). As a result some photons (a few
percent) produce a signal amplitude more than twice
the average. However, chances of high multiplicity
amplitudes are negligible, since the main source of
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amplification variation is the number of secondary
electrons emitted from first dynode which follows the
Poisson distribution. SiPMs have a narrow individual
microcell amplification distribution but their cross-
talk can cause the signal to be much higher. Studies
of SiPMs proposed for use in SPHERE-3 show
that chances for high cross-talk multiplicity n are
roughly proportional to pn, where p is the cross-talk
probability [11, 12]. This means that for a steady
stream of background photons the probability that
from a single photoelectron a PMT will produce a
pulse 10 times higher than average is below 10−30,
while for SiPM with 40% cross-talks this probability
is barely around 10−4.

The background photon flux Fb for the SPHERE-
3 experiment scheme was estimated to be around
0.04 ph./ns per pixel. With SiPM photon detec-
tion efficiency taken into account this gives F =

0.013 ph.e./ns. If the SPHERE-2 procedure will be
followed, the thresholds setup procedure will set them
unacceptably high. The procedure sets the thresholds
individually in each pixel in a few passes, every time
checking the pixel activation rate and matching it
against the target rate. The first is a top to bottom
pass, that lowers the initial a priori high threshold
by measuring every second the average pixel acti-
vation rate. The second pass is individual threshold
“tempering,” when each pixel activation frequency
should not exceed the target one (an average over 4 s
was used), and if it does, the thresholds are increased.
The last pass is a general trigger system check,
that it does not trigger more often than at a cer-
tain rate (1 Hz due to data acquisition system
limitations).

The target activation rate for pixels in the
SPHERE-2 was ft = 100 Hz. To estimate the
number of noise triggerings, the logic of the coinci-
dence method can be applied: for some characteristic
time τ (with an accuracy of which it is possible to
establish the simultaneity of events) the probability
of simultaneous registration of an event by several
independent channels depends on the number of
these channels. Thus, with τ = 1 μs coincidence
scheme gates the chance of random activation is ftτ

for a pair of pixels and (ftτ)
2 for a triplet, respec-

tively. This gives the random trigger rate (for Np =

109 pixels) Npf
3
t τ

2 ∼ 10−4 Hz, or about once per
3 h, which is significantly higher than required. The
SPHERE-2 electronics had low amplification and
coarse threshold steps, therefore there there was no
possible way to lower the thresholds further (e.g.,
pixel activation rates were either below 1–2 Hz or
above 10 kHz).

Application of this logic to SHPERE-3 SiPMs
will result in an expected rate of cross-talk multiplic-
ity n per pixel:

f(n) = pnF. (1)

This is a simplified approach since cases of si-
multaneous arrival of 2 or more background photons
are ignored. Also cross-talks are treated as simple
microcell triggering chains, e.g., a triggered microcell
has a chance p to trigger another one, while a correct
simulation would be when a triggered microcell has
a chance to trigger a number of other microcells
with a Poisson mean λ = ln(1− p)−1 (that should
also depend on microcell position in the SiPM). The
simplified model yields a lower frequency, but the
difference is not very significant at higher n (a more
accurate probability function can be found in [12]).

For the target rate ft = 100 Hz n should be no
less than logp(f/F ) + 1 ∼ 14 (it will yield around
10 random triggers per hour). For the target rate
ft = 1 kHz n will be about 11 (and about 2.5 random
triggers per second). These values are relatively high.
SPHERE-2 had 3–5 ph.e. thresholds that worked for
big pixels. The small area of a SiPM pixel in the new
detector means that fewer signal photons (from EAS)
under comparable conditions will hit it, even with
respect to the large aperture. This leads to an increase
in the energy threshold of the detector. However, the
new detector’s target low energy threshold is, again,
lower than that of SPHERE-2, thus the number of
photons reaching each pixel from an event that should
be registered is quite low, on the scale of 3–5.

To solve this problem several options exist. Each
has its pros and cons.

Reduction of pixel activated state duration τ will
reduce random coincidence rates but can altogether
stop the trigger system from activating upon EAS
events since they have a time structure measured on
the order of microseconds. This includes the time it
takes the EAS plane to cross the observation plane
plus differences in optical path lengths for different
pixels. These values increase with altitude.

Lowering the thresholds by increasing k, which
is the number of simultaneously activated pixels re-
quired for a trigger to work (random trigger rate is
roughly Npf

k
t τ

k−1), will result in a topological com-
plexity in defining which set of pixels is considered
adjacent on a hexagonal grid. Moreover, this will in-
crease the number of missed events at lower energies,
since a dense patch of pixels will only be activated by
bright events, since fluctuations and distribution of
the EAS CL photons have a complex structure on the
mosaic. In Fig. 3 an example of a signal from an EAS
event is shown for reference. The image does not look
even remotely smooth.
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Implementation of online processing of complex
visual patterns will require additional computing
power and, critically, more computational time than
there reasonably is to make an “an event”/“not an
event” trigger decision. This time is no more than
1–4 ticks of the data acquisition system clock or a
bit more if some parallelization or data processing
conveyor is designed, e.g., 4 parallel processing lanes
will give 4 times more time to make a decision, but
still this is a very limited time window.

3. METHOD

To circumvent this limitation, it was proposed to
use a two-stage trigger system. The idea is that the
topological trigger itself is only the first stage of ran-
dom noise filtration. After it another system checks
that there is eventlike data in the buffer. However, it
should be noted that this second stage check should
be done in a relatively fast manner.

This approach to filtration of random coincidence
triggers allows one to ease the overall trigger rate
constraints, since there is a limitation only on the
overall registration rate (from the data acquisition
system operation speed or data storage space lim-
itation). In the first stage, a topological trigger is
activated, and a small sample recording begins on a
fixed number of bins. The data is then transferred
to the second stage designed to filter out fragments
without an EAS signal. Thus, the problem of binary
classification is addressed.

Operation of the trigger’s second stage requires
the identification of complex visual patterns, for
what convolutional neural networks (CNNs) [13]
were chosen. Subsection 3.1 describes the process
of collecting and preparing data for training, and
Subsection 3.2 describes the neural network and
training parameters.

3.1. Data Preparation

To generate a dataset the process of EAS photons
hitting the detector mosaic was simulated. This sim-
ulation consisted of 4 stages: generation of a bank
of EAS events using the Monte Carlo simulation
(with optical background estimation), modeling of the
passage of reflected photons through the atmosphere,
modeling of the passage of photons through the op-
tical design of the telescope, electronics (SiPM) re-
sponse calculation.

1. For the Monte Carlo simulation, the COR-
SIKA [14] package was used. 100 events
from 10 PeV primary iron nuclei with the same
zenith angle (10◦) were simulated. For each
simulated event, the coordinates of the shower

Table 1. EAS modeling parameters

Parameter name Value

Hadron interaction model QGSJETII-04

Atmosphere model No.1 (US standard)

Telescope altitude above snow 1000 m

Observation level 450 m

Range of axis coordinates ±500 m

axis relative to the telescope were also ran-
domly selected 100 times, increasing the num-
ber of independent samples to 10 000. Event
parameters are given in Table 1.

2. Simulation of the passage of photons from the
snow to the detector through the atmosphere
involved geometrical reprojecting of the light
spot on the snow into a light spot on the en-
trance aperture of the detector. The Lamber-
tian reflection model for snow was used, which
is consistent with the experimental verification
of the properties of snow in the previous version
of the experiment.

3. For simulation of the passage of photons
through the optical design of the telescope, the
Geant4 [15] package was used. An optical
design with a maximized entrance aperture
was selected. The telescope geometry was
built using STL files since the mirror and
corrector plate was too complex for Geant4 in-
built primitives. Configuration parameters are
shown in the Table 2.

4. Accounting for electronics involved modeling
the response of the data acquisition system
to the stream of photons. Since the system
at this level is close to linear (operating far
from the amplifiers’ limits), the response was
calculated as the sum of individual responses
to each of the EAS’ and background pho-
tons. The response accounts for SiPM cross-
talks (parameters were taken from [11] for the
same SiPM type—SensL MicroFC-SMTPA-
60035 [16]), amplification fluctuations, output
pulse profile (see [17]), digitization process (in-
cluding clock shift across different elements),
and more. Electronics simulation parameters
are given in Table 3.

The electronics output signal was a 500 bin long
(6.25 μs) time sequence for each of the 2653 pix-
els, near the 225 time bin (almost the center) of

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 79 Suppl. 2 2024



S680 ENTINA et al.

Table 2. SPHERE-3 telescope optical system parameters

Parameter name Value

Curvature radius of the mirror 1654 mm

Mosaic radius 340 mm

Curvature radius of the mosaic 868 mm

Aperture radius 850 mm

Light collector lens radius 7 mm

Entrance aperture area ∼2.27 m2

Table 3. Electronics response simulation settings

Parameter name Value

SiPM voltage 29.6 V

SiPM temperature −15.0◦C

SiPM overvoltage 6.02 V

Background photon amplitude 0.013 ph./ns

Digitization frequency 80 MHz

Table 4. Neural network architecture

Layer name Parameters

Conv2d (1, 2, 3×3, 1)

Conv2d (2, 6, 4×4, 2)

Conv2d (6, 3, 4×4, 2)

Conv2d (3, 3, 4×4, 4)

Dense (345, 2), bias

Table 5. Classification results

Detected as

without threshold with threshold

True False True False

Real label
True 99.3% 0.7% 97.2% 2.8%

False 1.0% 99.0% 0.1% 99.9%

which was the simulated event. Each pixel (SiPM
module) was assigned a serial number, starting from
the center, clockwise. The signals from the pixels
were combined along one axis in ascending order of
the serial number, without additional consideration
of positional information. For this 50 bin long non-
overlapping fragments (625 ns) were cut out from the

simulated sequence, some containing the full event
(since the event location was known), some contain-
ing pure background, and each was labelled (Fig. 4).
After applying all of the described modifications, the
dataset was split into a train and test portions in a
ratio of 8 : 2 and normalized. In total the training set
contained 8000 samples and the test set contained
2000 samples, both with a 1 : 1 event to background
ratio. Then the convolutional neural network was
constructed and trained.

Working on prerecorded sections also allows us
to use all of the information about a part of the time
sequence. This allows us to treat the time dimension
as another spatial dimension, and thus use 2D con-
volutional layers.

3.2. Implementation Details

A practically minimal convolutional neural net-
work architecture was chosen so as to fit if needed
onto a microcontroller or FPGA chip. It consisted of
4 convolutional layers and one fully connected layer,
as detailed in Table 4. Each cell in the parameters
column contains a line (A, B, C ×D, E), that should
be interpreted as follows: A is the number of input
channels, B is the number of output channels, C ×D
is the kernel size, E is the stride. The ReLU [18]
was used as a nonlinear activation function, and the
output layer was normalized using the softmax func-
tion, allowing the interpretation of logits as class
probabilities.

For training we used the negative log likelihood as
a loss function. The Adam optimizer [19] was used
with an initial learning rate of 10−3. The CNN was
trained for a total of 50 epochs. For validation and
evaluation of the final neural network, only accuracy
(number of correctly predicted labels) was used.

4. RESULTS

The classification accuracy is given in the Table 5.
The critical metric for the two-stage trigger system is
the false-positive probability, since during the normal
detector operation the event rate is 106 times rarer
than the expected noise rate. Without any additional
manipulations with the outputs the neural network
yields a 1.0% false positive rate what is a good result.
However, the introduction of class separation thresh-
olds allows for lowering the false positive rate. The
separation threshold is an additional constant that
is applied to the neural network outputs, artificially
inflating or deflating the probability of predicting a
specific class. Fine-tuning this value allows one to
achieve maximum filtering with an acceptable num-
ber of missed events. In Table 5 the “without thresh-
old” columns show the metrics for the pure outputs

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 79 Suppl. 2 2024



APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS S681

Fig. 3. Example of an EAS CL structure on the mosaic
from a primary 10 PeV iron nuclei. The image represents
some instant signal values in pixels and not the total
signal collected. The crescent shape of EAS is the result
of photon arrival delays due to differences in optical path
lengths.
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Fig. 4. Dataset preparation step. The red highlighted
areas contain only noise, and the green highlighted area
contains the EAS-event signal.

of the neural network. The “with threshold” columns
show the results with class separation threshold ap-
plying.

By adjusting the class separability threshold, the
number of false positives can be reduced to 0.1%, al-
beit at the cost of losing 2.8% of events (false negative
rate).
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Fig. 5. Distribution of the third pixel amplitude in the
brightest triplet of the EAS image.

5. DISCUSSION

The comparison with SPHERE-2 was carried out
in a somewhat complex manner. The energy thresh-
old of the SPHERE telescopes depends on the alti-
tude (nearly linearly). The majority of the SPHERE-
2 flights were carried out at an altitude of around 480–
500 m. The estimated energy threshold for this alti-
tude was around 10 PeV (see Subsection 5.2 in [4] for
details). The expected SPHERE-2 energy threshold
for 1000 m altitude would have been around 20 PeV.

Simulations for SPHERE-3 in this work showed
that 10 PeV EAS rarely produce amplitudes corre-
sponding to 14 photoelectrons in the third brightest
pixel of the whole event. However, in 50% of the cases
the dimmest pixel of the brightest triplet had around
5 photoelectrons (see Fig. 5). This means that direct
application of the SPHERE-2 logic to the SPHERE-
3 detector (as described in Section 2) would lead to
an energy threshold of above 30 PeV (since EAS CL
flux is proportional to primary energy). The 0.1%
false positive rate of the neural network obtained in
the previous section allows achieving a 103 times
higher rate of trigger activation. This pixel activation
rate corresponds to a 6–7 photoelectrons amplitude
(e.g., almost two times lower) and around 12–15 PeV
detector energy threshold.

Precision of the primary particle parameters re-
construction in case of such low signal amplitudes is a
matter of another study, however, the large number of
pixels allows one to use statistical approaches for data
analysis and further detector operation optimization.
Additionally, the possibility of implementing a neural
network using the limited computational power of
FPGA chips or microcontrollers has not yet been fully
explored, as no specific solutions have been selected
for the implementation of the detector electronics.
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Other approaches to the trigger system logic
(shorter pixel activation time, switching from triplets
to septets, etc.) will be also studied for their effective
energy thresholds. It also should be kept in mind, that
this study was performed for reflected EAS CL that
has a relatively long-time structure. The option of
direct CL registration by the main telescope camera
was not included in the scope of this study, as it
has different temporal properties. However, for its
case the trigger system should also account for short
bright bursts of direct CL as a factor of operation.
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